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Coarsening dynamics of a one-dimensional driven Cahn-Hilliard system
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We study the one-dimensional Cahn-Hilliard equation with an additional driving term representing, say, the
effect of gravity. We find that the driving fieldE has an asymmetric effect on the solution for a single
stationary domain wall~or ‘‘kink’’ !, the direction of the field determining whether the analytic solutions found
by Leung@J. Stat. Phys.61, 345 ~1990!# are unique. The dynamics of a kink-antikink pair~‘‘bubble’’ ! is then
studied. The behavior of a bubble is dependent on the relative sizes of a characteristic length scaleE21, where
E is the driving field, and the separationL of the interfaces. ForEL@1 the velocities of the interfaces are
negligible, while in the opposite limit a traveling-wave solution is found with a velocityv}E/L. For this latter
case (EL!1) a set of reduced equations, describing the evolution of the domain lengths, is obtained for a
system with a large number of interfaces and implies a characteristic length scale growing as (Et)1/2. Numeri-
cal results for the domain-size distribution and structure factor confirm this behavior, and show that the system
exhibits dynamical scaling from very early times.@S1063-651X~96!00511-9#

PACS number~s!: 64.60.Cn, 75.40.Gb

I. INTRODUCTION

When a system is quenched from a homogeneous high-
temperature phase into a two-phase region, domains of the
new equilibrium phases form and evolve with time. The dy-
namics of systems described by a conserved order parameter,
such as binary alloys or binary liquids undergoing phase
separation, is conventionally modeled by the Cahn-Hilliard
equation @1#. At late times after the quench, the domain
coarsening is well described by a scaling phenomenology,
with a single characteristic length scaleL(t).

Recently there has been much interest in the dynamics of
phase separation in the presence of an external driving field
@2–4#, as this has applications to, for example, spinodal de-
composition in a gravitational field. In order to capture the
dynamics of a system in the presence of an external driving
field, an order-parameter-dependent diffusion coefficient~or
‘‘mobility’’ ! is required@2,5,6#. The resulting modification
of the Cahn-Hilliard equation has been studied by several
authors both analytically and numerically@2,5–9#. In all the
two-dimensional simulations the two phases form structures
that align along the direction of the field, with different time
dependences for the typical length scales parallel and perpen-
dicular to the field. Analytic work on interfacial dynamics
has revealed an instability in surfaces perpendicular to the
field @2,10# that explain this configuration. However, given
the complexity of the problem, no satisfactory scaling results
have been obtained.

In order to obtain some qualitative understanding, we
study in this paper the Cahn-Hilliard equation in one dimen-
sion. This system has been studied in the absence of a field
by several authors@11–13#. In the presence of a field, ana-
lytic solutions have been obtained for a single interface in an
infinite system@8#. In Sec. II we show, however, that these
solutions are not unique. The direction of the field relative to

the kink profile determines whether the analytical solution
obtained by Leung@8# is unique or just one of a family of
solutions. The work in Sec. II motivates the introduction of
an additional characteristic length scale inversely propor-
tional to the field strength@7#.

In Sec. III the profile of kink-antikink pairs is studied
numerically. The behavior of these systems is dependent on
the relative values of the characteristic lengthE21 andL, the
distance between the interfaces. These systems are consid-
ered in two separate limitsEL!1 andEL@1. ForEL!1,
the kink-antikink pair form a traveling wave, moving at a
speed proportional toE/L. ForEL@1, the domain walls are
essentially frozen.

The limit EL!1 is reconsidered in Sec. IV, in the context
of a system with many interfaces. We consider the case in
which all the domain lengthsLi satisfy ELi!1 and show
that a simple effective dynamics for the interfaces can be
constructed, in which the velocity of a given interface is
proportional to the difference of the inverse lengths of the
domains on either side of it. This then leads to a simple
equation for the time evolution of the domain lengths them-
selves, from which it follows immediately that any charac-
teristic length scale must grow asAt. Numerical simulations
of the effective dynamics demonstrate scaling, with an aver-
age domain size growing asAt as expected.

Section V concludes with a discussion and summary of
the results.

II. SINGLE-INTERFACE SOLUTIONS
OF THE CAHN-HILLIARD EQUATION

The phase-separation dynamics of a conserved system are
modeled by the Cahn-Hilliard equation@1#
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whereF@f# is the usualf4 Hamiltonian, but with an addi-
tional term to include the effects of the external field

F@f#5E ddxS 12 ~¹f!21
1

4
~12f2!22Ẽ–xf D . ~2!

Throughout this paper only the deterministic Cahn-Hilliard
equation is considered, i.e., the Langevin noise term has been
omitted. This restricts the limits of validity of these results to
temperatureT50 or, more generally, toT small enough that
the effects of thermal fluctuations may be neglected.

If the mobility l is independent of the order parameter,
inserting~2! into ~1! shows immediately that the term involv-
ing Ẽ drops out of the dynamics. For nontrivial~and physi-
cal! results, therefore, the inclusion of an external field re-
quires that the dependence of the mobilityl on the order-
parameter fieldf should be explicitly taken into account
@2,5,6#. In this paper we take the simplest form forl that
maintains the symmetry underf→2f, i.e., l512af2.
Hence rewriting Eq.~1! in one dimension and defining
aẼ5E, we obtain
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where

m5f~f221!2f9

is the chemical potential andJ is the current. Note that we
have only kept the leading-order term ina, as is conven-
tional. Technically, this is equivalent to taking the limits
a→0 andẼ→`, holdingE5aẼ fixed.

For an infinite system, analytic solutions to Eq.~3! have
been found for a single stationary interface@8#. The order-
parameter profile for a kink solution is given by

f~x!5f`tanh~f`x/A2!, ~4!

with

f`
2511A2E, ~5!

valid for both signs ofE. The corresponding antikink solu-
tion is obtained by inserting an overall minus sign in~4! and
replacingE by 2E in ~5!. @This reflects the symmetry of~3!
underf→2f, E→2E.#

In general, solutions to nonlinear equations are not
unique. The aim of this section is to investigate the solutions
of Eq. ~3! numerically, and to present some simple analysis
that accounts for the~at first sight surprising! results.

The continuum equation~3! was discretized on the inter-
val (2L/2,L/2) and antiperiodic boundary conditions
f(2L/2)52f(L/2) were imposed. A kink solution was
sought by using an antisymmetric tanh profile, with
f(0)50 andf(L/2).0, as the initial condition. A range of
initial values off(L/2) was used. This initial state was then
evolved under the dynamics~3! until the system reached a
stationary profile. A system sizeL5500 was used with a
mesh size of 0.5. This value ofL was found to be large
enough that the results showed no finite-size effects. The
time step used in the iteration wasDt50.005.

It was found that the number and form of the stationary
profiles found were strongly dependent on the sign of the
field. For each negative field value a unique stationary wall
profile was found, independent of the initial conditions used,
i.e., of the initial value off(L/2). The final value of
f(L/2) obtained was found to be below the analytically pre-
dicted value (11A2E)1/2 @Eq. ~5!#; the discrepancy van-
ished, however, as the mesh size was decreased~see Fig. 1!.

For a positive field a family of solutions was found, with
the final value off(L/2) equal to the initial value. The in-
terface was found in general to be broader than forE,0, the
asymptotic exponential decay to the valuef(L/2) occurring
at a rate determined by the magnitude of the field, the decay
rate decreasing as the field decreases. For larger values of the
field, this exponential tail became oscillatory~see Fig. 2!.

FIG. 1. Stationary single-interface solutions of Eq.~3!. There is
a unique solution for eachE,0. ~a! E520.1, ~b! E520.3, and
~c! E520.5.

FIG. 2. Stationary single-interface solutions of Eq.~3!. ~a!
E50.2, ~b! and ~c! E50.3: two examples from a family of solu-
tions. For each value of the field there is a different decay length.
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Some simple analysis of the differential equation~3! can
be used to explain some of these features. The existence of a
solution representing a single interface in an infinite system
is dependent on the choice of boundary conditions. For a
physical solution, two of the boundary conditions imposed
must bef(0)50, which fixes the position of the interface,
and f9(0)50, a consequence of the antiperiodicity. The
other two boundary conditionsf8(0) and f(`) must be
chosen to ensure the existence of a solution. This places
constraints on the possible values of these variables. By the
use of some simple stability analysis it is possible to deduce
the type of constraints this places onf8(0) andf(`) and
hence the number of values for which a solution exists.

Equation~3! can be integrated once to give a third-order
differential equation

Ef21~3f221!f82f-5Ef`
2 , ~6!

the integration constantEf`
2[Ef2(6`) ensuring that

f(x) tends to a constant value at infinity. Linearizing around
this value for large positivex, f(x)5f`1f̃(x), gives

f̃-1~123f`
2 !f̃822Ef`f̃50. ~7!

It follows that f̃ will have solutions of the form exp(lx),
where the possible values ofl are the roots of the cubic
equation

l31~123f`
2 !l52Ef` . ~8!

The nature of the roots of this equation is dependent on the
values off` andE.

Note that in the present discussion we are taking
f(`).0 and considering both signs ofE. This means that
we are dealing with a kink, not an antikink. Later, when we
consider systems with both kinks and antikinks, we will fix
E.0. Since, however, the equation of motion~3! is invariant
underE→2E, f→2f, it follows that the properties of an
antikink for E.0 are identical to those of a kink forE,0.
In the following stability analysis, therefore, we restrict the
discussion to kinks.

There are four cases to consider, as illustrated in Fig. 3.

~a! E.0 and (Ef`)
2.(f`

22 1
3 )

3. Two roots are com-
plex with negative real parts and the third root is real and
positive.

~b! E.0 and (Ef`)
2,(f`

22 1
3 )

3. All roots are real: one
positive and two negative. ForE→0, f`→1 and the roots
arel'6A2,2E.

~c! E,0 and (Ef`)
2,(f`

22 1
3 )

3. All roots are real: one
negative and two positive. ForE→0, the roots are
l'6A2,2E.

~d! E,0 and (Ef`)
2.(f`

22 1
3 )

3. Two roots are com-
plex with positive real parts and the third root is real and
negative.

For x→`, the functionf̃(x) has the form

f̃~x!5(
i51

3

aiexp~l ix!.

The coefficientsai are fixed by the initial conditions and the
value off` . Linear stability of the putative solution with
f(x)→f` as x→` requires thatf̃ vanish at infinity, i.e.,
the coefficientsai corresponding to eigenvaluesl i with posi-
tive real part must vanish.

To see what this implies, consider integrating the third-
order equation ~6! with the initial conditions
f(0)505f9(0), which follow from the antisymmetry of
the solution, and some fixedf8(0). One also needs to
specify the value of the parameterf` appearing in the equa-
tion. The two parametersf8(0) andf` must be varied until
the solutionf(x) approaches the same valuef` asx→`. If
the input values deviate slightly from the correct values, the
solution will ultimately diverge fromf` due to the presence
of unstable modes~with Rel i.0) in the linearized solution
for f̃. To ensure that such diverging terms are absent, the
parametersf8(0) andf` have to be adjusted until the cor-
responding coefficientsai vanish. This is the familiar
‘‘shooting method’’ of solving nonlinear differential equa-
tions.

For E.0 there is only one unstable mode. Hence, for
solutions to exist only one coefficient must vanish, imposing
a constraint of the forma1@f8(0),f`#50. This defines a
line in parameter space for which this coefficient vanishes,
resulting in a range of possible values forf` . One therefore
expects a family of solutions, parametrized byf` , for
E.0.

ForE,0, however, there are two roots with positive real
parts. Therefore the coefficients of both unstable modes are
required to vanish. Hence the only choice for the parameters
f` andf8(0) for which a solution exists is at the intersec-
tion of the two lines defined by setting both coefficients to
zero, i.e.,a1@f8(0),f`#505a2@f8(0),f`#. This results in
a unique solution forE,0.

The values ofE andf` determine whether the roots of
the cubic equation~8! are real or complex. The existence of
complex roots with negative real parts forE sufficiently
large and positive@case~a! in Fig. 3# results in oscillatory
behavior.

For a given stable solution, the eigenvaluel with the
least-negative real part determines the rate of the asymptotic
exponential decay towardsf` . For E small and positive,

FIG. 3. Graphic solution~schematic! of Eq. ~8! for the four
cases discussed in the text.
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this eigenvalue is2E. Hence, forE.0, the value ofE
determines a characteristic length in the systemE21, which
defines the width of any boundary effect at an interface. This
characteristic length is important when considering systems
with more than one interface as in the following sections. For
E,0, by contrast, there is only one negative eigenvalue,
which approaches a nonzero limiting value forE→0: the
width of a kink forE,0 therefore remains of order unity for
smallE.

How do we interpret the analytic kink solution~4! in the
light of the foregoing discussion? ForE,0, the analytic so-
lution is the unique solution we predict. ForE.0, we have
argued for~and numerically demonstrated! a family of solu-
tions. Which one corresponds to Eq.~4!? It is easy to show
that the exponential decay of~4! to f` asx→` is governed
by the more negative of the two negative eigenvalues arising
from the stability analysis. The exact solution~4! therefore
corresponds to the case where the amplitudea corresponding
to the least negative eigenvalue vanishes, i.e., to just one
member of the family of solutions.

Throughout this section we have considered only kink
solutions (f.0 at positive infinity! and allowedE to take
either sign. We conclude by interpreting our results for the
physically relevant case where the sign ofE is fixed~we take
E.0) and both kinks and antikinks are present. From the
symmetry of the dynamics underf→2f, E→2E, it fol-
lows that forE.0 there is a family of kink solutions, but a
unique antikink solution. In a system with well-separated
~relative toE21) kinks and antikinks, however, continuity of
the functionf will select the kink solution that matches
smoothly the unique antikink solution. When the kink-
antikink separation is small compared toE21, more interest-
ing behavior is possible. This is the subject of the next sec-
tion.

III. SINGLE-BUBBLE SOLUTIONS OF
THE CAHN-HILLIARD EQUATION

In this section solutions to the Cahn-Hilliard equation for
a kink-antikink pair in a periodic system are considered. The
kink-antikink pair is a bubble of plus phase moving in a sea
of minus phase. The velocities of the interfaces were inves-
tigated for various field strengths and kink-antikink separa-
tions.

The work in the preceding section produced a character-
istic lengthE21, which determines~for a kink! the width of
any boundary effect present at an interface. In the systems
considered in this section there is a second important char-
acteristic lengthL, the distance between the two interfaces.
The behavior of these systems is dependent on the relative
values of these two characteristic lengths. In this section we
will consider two limits: first the case whereEL@1 and then
the opposite limitEL!1. The results from the second re-
gime motivate a simple model for the many-interface prob-
lem, which is dealt with in Sec. IV.

A. EL@1

The numerical solutions found for a kink-antikink pair in
this limit are stationary. The value of the order parameter
between interfaces was dependent only on the value of the

field and was numerically found to be consistent with
f'6(12A2E)1/2, the value given for an antikink by the
analytical solution~4!. Some examples of the profiles found
are shown in Fig. 4.

These results can be explained using the results of Sec. II.
If we assume that the system will reach a steady state and the
order parameter may be written as a traveling wave
f5f(x2vt), then the Cahn-Hilliard equation~3! may be
integrated once to obtain

Ef21~3f221!f82f-5J02vf, ~9!

whereJ0 is a constant of integration andv is the wave ve-
locity. In the limit EL@1 the order parameter is approxi-
mately constant both inside and outside the bubble
f'6(12A2E)1/2. Inserting this into the above equation in
these regions and demanding that it hold inside domains of
both sign, it is clear that one must haveJ05E(12A2E) and
v50. Therefore the solution is stationary, and since in this
limit the separationL of the interfaces is large compared to
E21, the profile is the combination of two single-interface
solutions.

For one of the interfaces there exists a family of solutions
for a fixed value of the field, whereas the other interface has
a unique solution with a plateau height given by
6(12A2E)1/2. This specifies the boundary conditions for
the first interface, hence picking out one from the family of
solutions.

B. EL!1

In this limit the system was found numerically to evolve
to a steady state with a fixed profile moving at a finite ve-
locity. This may be shown by a comparison of the order
parameter with the current, since for a traveling-wave solu-
tion Eq. ~3! gives2vf852J8. Therefore the order param-
eter will be a multiple of the currentJ plus an overall con-
stant. This expectation is confirmed by the data presented in
Fig. 5.

FIG. 4. Kink-antikink solutions withL'107 andL'161, for
E50.1, corresponding to the limitEL@1.
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As in the previous limit, a long-range boundary effect
exists at the kink interface, with the order parameter decay-
ing exponentially to a fixed value outside the bubble. How-
ever, sinceEL!1 the full exponential tail on the other side
of the interface~i.e., between the two interfaces! is missing
and the order parameter varies roughly linearly between the
two interfaces, through a height difference proportional to
the field. This linear regime between the interfaces is evident
in Fig. 5.

Using the assumption~verified numerically! that the solu-
tion may be written as a traveling wave, Eq.~9! becomes

E~f22f`
2 !1~3f221!f82f-1v~f1f`!50, ~10!

where2f` is the value of the order parameter in the minus
phase far from the interfaces. The integration constantJ0 in
~9! was fixed in ~10! by the requirementf(6`)52f` .
Integrating this equation over the whole system yields an
expression for the velocity

v5E
*dx~f`

22f2!

*dx~f`1f!
5

E

2f`L
E dx~f`

22f2!, ~11!

where the final result follows from noting thatf.f` inside
the bubble and2f` outside.

The functionf`
22f2 is peaked at the interfaces. This can

be used to explain why a finite velocity is expected. Consider
first the caseEL@1, for which we showed above that the
velocity is zero. For this case, therefore,*dx(f`

22f2) must
be zero. Since the kink and antikink are well separated and
the order parameter saturates at the valuef` in the interme-
diate plateau region,*dx(f`

22f2) is a sum of kink and
antikink contributions. One of the interfaces, corresponding
to the antikink, is known analytically@from Eq. ~4!# and the
contribution it makes to the integral is 2A2f` . The contri-
bution from the kink interface therefore must give an overall
negative contribution of22A2f` . This is possible because,

as is clear from Fig. 4, the kink solution overshootsf` and
approaches the plateau atf` from the ‘‘wrong’’ side. The
function f`

22f2 for the kink therefore contains both posi-
tive and negative regions, as shown in Fig. 6. The negative
regions evidently contain the larger area@note that, although
the magnitude off`

22f2 in these regions isO(E), the de-
cay constant is alsoO(E), leading to an area ofO(1)# in
such a way that the integral for the kink interface is precisely
22A2f` .

Consider now the caseEL!1. In this case, the interior of
the bubble is too small to contain the full exponential tail
from the kink. The contributions from the kink to
*(f`

22f2) will therefore be less negative than when
EL@1, resulting in a net positive value for the integral and,
via ~11!, a positive bubble velocity,v}E/L. Therefore, in
this limit the interfaces evolve to a fixed profile that moves
with a velocityv}E/L. The qualitative tendency of smaller
bubbles to move faster than larger ones was noted by Yeung
et al., on the basis of numerical studies@2#.

We can make this argument quantitative in the limit of
smallE, for which f`→1. In this limit, the area under the
kink peak in Fig. 6 approaches the same value 2A2 as the
area under the antikink. The negative region between the two
peaks is completely suppressed, as the decay length 1/E is
much larger than the separationL of the peaks. The negative
contribution from the semi-infinite region to the left of the
kink peak, however, retains the value22A2. The total area
under the kink is therefore zero and the area under the kink-
antikink pair is 2A2. Equation~11! then gives a velocity
v5A2E/L for E→0. Applying this result to the data of Fig.
5, for whichE50.01 andL520.88 ~measured between the
zeros off), gives v56.7731024, which compares well
with the measured velocity of 6.8231024.

The results of this section will be used in Sec. IV to
derive the set of reduced equations employed to simulate a
multidomain system. As a first step in generalizing this ap-
proach to many domains, we express the single-bubble cal-

FIG. 5. Comparison between the order-parameter profile and the
current for a kink-antikink pair of sizeL'21, for E50.01, corre-
sponding to the limitEL!1.

FIG. 6. Plot~schematic! of f`
22f2(x) for a kink-antikink pair

in the limit EL@1. The total area under the curve is zero.
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culation in the limitEL!1 in terms of currents. From Eq.
~3!, the currentJ can be written, up to an overall constant, as

J52m82Ef25f-1~123f2!f82Ef2. ~12!

The velocity of an interface is related to the discontinuity in
the current at the interface@1# v5DJ/Df, whereDJ and
Df are the discontinuities in the current and the order pa-
rameter, respectively. For a bubble that moves without
change of shape~a traveling wave!, J must have different
valuesJin andJout inside and outside the bubble. To lowest
order inE, we can writef25f`

251 both inside and outside,
so that~12! becomesJ5f-22f82E in both regions. Out-
side the bubble, far from the interfaces,f is constant, so
Jout52E. Inside, the order parameter changes by an amount
of order E over a distanceL, so we estimatef852E/L
~andf- is negligible!, giving Jin;2E1O(E/L) correct to
O(E). Finally, both interfaces have the same velocity
v;E/L, in agreement with our earlier result~11! based on
the traveling-wave solution. This second approach is, how-
ever, readily generalizable to the multidomain situation in
the small-E limit.

IV. MANY-INTERFACE MODEL

In this section a set of reduced equations is derived using
the work of the preceding section to describe the dynamics
of a large number of interfaces in a periodic system. This
reduced dynamics is numerically simulated, and the average
domain length, domain-size distribution function, and struc-
ture factor are calculated.

We consider the case in whichELi!1 for all domains
i , where theLi are the domain lengths. From the arguments
of the preceding section, we expect that, in this limit,
f8;2E/Li in domain i and that the currentJi in domain
i is given, up to an additive constant, byJi}E/Li . The pro-
portionality constant in this relation is the same for all do-
mains ~an extension of the argument given above for the
kink-antikink pair @15# gives its value as 4A2).

Let us define interfacei to have domain lengthLi to its
right and Li21 to its left. If the interface is a kink
(Df.0) its velocityv i is

v i
k5

DJ

Df
}ES 1Li 2 1

Li21
D . ~13!

For an antikink (Df,0) the velocityv i
ak is given by the

same expression, but with a factor21. If we arbitrarily as-
sign eveni to domains of positivef, the equation for the
time evolution of the domain lengthdLi /dt5(v i112v i) be-
comes

dLi
dt

5~21! iES 1

Li21
2

1

Li11
D , ~14!

where an overall constant has been absorbed into the time
scale. It follows immediately that, ifL is a typical domain
length,dL/dt;E/L, i.e.,L(t);(Et)1/2.

The dynamics of the system was studied numerically us-
ing this set of reduced equations. The system was initially
prepared with 100 000 domains with approximately equal

amounts of the plus and minus phases. The fieldE was ab-
sorbed into the time scale, i.e., we setE51 in ~14!. The time
step used in the iteration wasDt}t. This was chosen because
we expectt1/2 ~i.e., power-law! growth. Then theDt}t leads
to DL}L, i.e., domains typically change length by a fixed
~small! fraction of the mean length in each update. Similarly,
domains were annihilated if the distance between interfaces
became smaller than a specified~small! fraction of the aver-
age domain size. In the calculation of the average domain
size and the domain-size distribution function, results were
averaged over ten runs. It was found that the average domain
size^L(t)& grew asAt, as expected~Fig. 7!. The simulation
results show that the distribution functionP(L,t) ~the frac-
tion of domains which have sizeL at time t) scales well
from quite early times~Fig. 8!. The scaling function was

FIG. 7. Time dependence of the square of the average domain
length for the dynamics described by Eq.~14!. The mean domain
size grows ast1/2.

FIG. 8. Scaled domain-size distribution function for the dynam-
ics described by Eq.~14!. The data correspond to times 10~h!, 20
~1!, 40 (*), 80 (s), 160 (3), 320 (n), and 640 (L).
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found to be linear at the origin, with a Gaussian tail. How-
ever, we were unable to calculate it analytically.

Figure 9 shows the structure factor. This was taken as an
average of 500 runs. The scaling collapse is good except near
the peak, where the data are noisy. A ln-ln plot~Fig. 10!
shows that in the limitk^L&@1 the structure factor possesses
the expected Porod tailS(k,t)}k22. The constant of propor-
tionality is determined by the average domain-wall density
@1# S(k,t)54rk22. Hence we would expect a ‘‘Porod plot’’
of k2^L&S(k,t) to tend to the value 4 at largek^L&. The data,
although noisy in this regime, are consistent with this expec-
tation.

The small-k data in Fig. 10 suggest the quadratic depen-
denceS(k,t)}k2. We can show that this is the correct small-

k behavior, following the methods used to establish thek4

small-k behavior @1,14# for the nondriven Cahn-Hilliard
equation in dimensionsd.1.

For k→0, Eq. ~3! can be written in Fourier space as

dfk

dt
5 iEk~f2!k , ~15!

where the term of orderk2 is negligible and has been omit-
ted. Integrating with respect tot, multiplying by f2k , and
averaging gives the structure factor

S~k,t !52S~k,0!12^fk~ t !f2k~0!&

1E2k2E
0

t

dt1E
0

t

dt2^~f2@ t1# !k~f2@ t2# !2k&.

~16!

SinceS(k,t) has the scaling formS(k,t)5Lg(kL), where
L is shorthand for̂ L&, it follows that S(k,0) is negligible
compared toS(k,t) at late times~large L) and can be ne-
glected. Similarly,̂ fk(t)f2k(0)& has the scaling form@1#
Llh(kL), where l,d/251/2 follows from the Cauchy-
Schwarz inequality@16#, so this term can also be dropped for
largeL.

Next we consider the equal-time correlation function
D(r ,t)5^@f`

22f2(x)#@f`
22f2(x1r )#&. It’s Fourier trans-

form is the equal-time version of the quantity required in
~16!. The functionr(x)[f`

22f2(x) vanishes except near
domain walls, so it is essentially a domain-wall density func-
tion, with d-function contributions from the walls@15#. It
follows that^r&;1/L, the mean domain-wall density, while
D(r ,t) has the scaling formD(r ,t)5L22f D(r /L). The two-
time generalization isD(r ,t1 ,t2)5L1

22f D(r /L1 ,L2 /L1),
whereL1[L(t1). The spatial Fourier transform required in
~16! has the formT(k,t1 ,t2)5L1

21gD(kL1 ,L2 /L1), which
reduces toL1

21h(L2 /L1) in the limit k→0 ~we do not expect
T to vanish in this limit, becauser is not a conserved quan-
tity!.

If L(t) grows as a power oft, the double time integral in
~16! gives, up to constants,t2/L, so the right-hand side of
~16! is of orderE2k2t2/L. Requiring thatS(k,t)5Lg(kL)
have the same small-k form givesS(k,t);k2L3 and hence
L;(Et)1/2. It is reassuring that this form forL(t) agrees
precisely with that obtained from the reduced dynamics~14!.

V. CONCLUSION

We have studied, analytically and numerically, the effect
of an external driving field on the coarsening dynamics of
the one-dimensional Cahn-Hilliard equation atT50. For a
single stationary interface, it was shown that the direction of
the field for a domain wall of a given sign determines
whether there is a unique solution or a family of solutions. In
the latter case, the approach of the interface profile function
to its asymptotic value is governed by an exponential tail
with a decay constant that vanishes linearly with the driving
field E. There is therefore a new characteristic length scale
E21 in this system.

The behavior of a kink-antikink pair~‘‘bubble’’ ! falls into
two classes, characterized by the relative values of the inter-

FIG. 9. Scaled structure factor for the dynamics described by
Eq. ~14!. The data correspond to times between 10 and 640, as in
Fig. 8.

FIG. 10. Double-logarithmic plot of the scaled structure factor.
Times between 10 and 640 are shown, as in Fig. 8. The straight
lines in the small-k^L& and large-k^L& regimes have gradients 2
and22, respectively. The latter is the expected Porod regime; an
argument for the former is given in the text.
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face separationL and the new characteristic lengthE21. In
the limit EL@1, the bubble profile is stationary. In the op-
posite limit EL!1, a bubble of plus phase moves through
the minus phase with a velocityv}E/L.

For the many-domain coarsening dynamics an equation of
motion for the domain lengths was derived@Eq. ~14!#, valid
in the regimeEL!1, in which the length of a given domain
changes at a rate determined by the lengths of the domains
on either side. The mean domain size grows asAEt. Despite
the apparent simplicity of this model, we have so far been
unable to make further analytical progress. Numerical simu-
lations, however, demonstrate dynamic scaling~for the
domain-size distribution and the structure factor! and con-
firm the predictedAt growth law. An argument for the ob-
servedk2 behavior of the structure factor at smallk has been
presented.

It would be interesting to compare the dynamics of this
effective model to that of the original driven Cahn-Hilliard
equation. There are practical obstacles, however, to a simu-
lation of the full dynamics. To ensure that the condition
EL!1 is satisfied at all times, a small value ofE is required,
leading to very slow growth, whereas in the reduced model
the value ofE factors out. Furthermore, updating the field
everywhere in space is computationally very inefficient, es-
pecially at late times, compared to just updating the domain
lengths. Systems large enough to support the 105 initial do-
mains used in the reduced dynamics~and needed for good
statistics! would require prohibitively large computer time.

We have shown that the mean domain sizeL grows as
AEt when the conditionL!1/E is satisfied. ForE strictly
zero, however, logarithmic growth ofL with time is obtained
@11#, so the question of the crossover asE→0 arises. In our
treatment, the typical interface velocity is of orderE/L,
whereas forE50 it is of orderm/L, where the chemical
potentialm is of order exp(2constL) @13#. The crossover
between these two forms occurs whenL; ln(1/E), so the

validity of our approach strictly requires ln(1/E)!L!1/E.
For smallE, of course, this regime is very broad.

In a related work, the one-dimensional Ising model with
Kawasaki spin-flip dynamics, biased in one direction, has
been studied@17#. Numerical results were obtained for a
range of volume fractions, including the case of equal vol-
ume fractions simulated here, andAt growth demonstrated.
There, as here, rather general arguments lead toAt growth
for all volume fractions: for the present model from the di-
mensional analysis of Eq.~14!. For the Ising model, how-
ever, exact results for the domain-size distribution~and for
the ‘‘persistence exponent’’@17#! were obtained in the limit
where one phase occupies a negligible volume fraction, so it
is interesting to consider the present model in this same limit.

When one phase~the plus phase, say! occupies a very
small volume fraction, the system consists of domains of
plus phase separated by~typically! much larger domains of
minus phase. To a first approximation, therefore, each plus
domain can be treated as an isolated bubble in the sense of
Sec. III. Each such bubble then moves at a speedE/L, where
L is its length~we are takingEL!1 here!, all bubbles mov-
ing in the same direction. As a result, small bubbles catch up
with larger bubbles, with which they then merge, and the
combined domain slows down. Just before the bubbles
merge, the approximation of treating them as independent
breaks down when the size of the intervening minus domain
becomes comparable with the size of the bubbles. This pre-
sumably leads to negligible corrections to the scaling func-
tions, however, in the small volume-fraction limit. This new
model is so simple that analytic progress may be possible.
However, we will leave this question for future work.
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