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Coarsening dynamics of a one-dimensional driven Cahn-Hilliard system
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We study the one-dimensional Cahn-Hilliard equation with an additional driving term representing, say, the
effect of gravity. We find that the driving fielE has an asymmetric effect on the solution for a single
stationary domain wallor “kink” ), the direction of the field determining whether the analytic solutions found
by Leung[J. Stat. Phys61, 345(1990] are unique. The dynamics of a kink-antikink péibubble”) is then
studied. The behavior of a bubble is dependent on the relative sizes of a characteristic lendh Scateere
E is the driving field, and the separatidnof the interfaces. FOEL>1 the velocities of the interfaces are
negligible, while in the opposite limit a traveling-wave solution is found with a velacit§/L . For this latter
case EL<1) a set of reduced equations, describing the evolution of the domain lengths, is obtained for a
system with a large number of interfaces and implies a characteristic length scale growity&s Nlumeri-
cal results for the domain-size distribution and structure factor confirm this behavior, and show that the system
exhibits dynamical scaling from very early tim¢$1063-651X96)00511-9

PACS numbd(s): 64.60.Cn, 75.40.Gb

I. INTRODUCTION the kink profile determines whether the analytical solution
obtained by Leund8] is unique or just one of a family of
When a system is quenched from a homogeneous higtsolutions. The work in Sec. Il motivates the introduction of
temperature phase into a two-phase region, domains of th&n additional characteristic length scale inversely propor-
new equilibrium phases form and evolve with time. The dy-tional to the field strength7]. N o _
namics of systems described by a conserved order parameter, In Sec. lll the profile of kink-antikink pairs is studied

such as binary alloys or binary liquids undergoing phaS@umerically. The behavior of these systems is dependent on
the relative values of the characteristic length* andL, the

separation, is conventionally modeled by the Cahn-Hilliard" , ,
equation[1]. At late times after the quench, the domain dlstance between thelln'.[erfaces. These systems are consid-
red in two separate limitEL<1 andEL>1. ForEL<1,

coarsening is well described by a scaling phenomenolog)f9 . > ; . :
with a single characteristic length scalét). the kink-antikink pair form a traveling wave, moving at a

Recently there has been much interest in the dynamics ngeed proportional t&/L. For EL>1, the domain walls are

hase separation in the presence of an external drivin ﬁeltassent@tlly frozen. . . . .

F2_4]’ as F'zhis has applicaEtions to, for example, spinodgl de- The limit EL<1is rec_on5|dered in Sec. IV, in the context
composition in a gravitational field. In order to capture theOf a system with many lnterfaces..We consider the case in
dynamics of a system in the presence of an external drivin hich aI.I the domam Iengthsi_satlsfy ELi.<1 and show
field, an order-parameter-dependent diffusion coefficient at a S|mple' effecpve dynam|c§ for the |_nterf§1ces can .be
“mobility” ) is required[2,5,6]. The resulting modification constru_cted, in Whlch the velocity 01_‘ a given interface is
of the Cahn-Hilliard equation has been studied by severali’r()po.rt'Onal to the d!fferenc_e of 'ghe inverse lengths O.f the
authors both analytically and numericall®,5—9. In all the doma!ns on elth(_ar side of It This then Iefads to a simple
two-dimensional simulations the two phases form structure§9uation for the_tlm(_e evolut|or_1 of ‘h‘? domain lengths them-
that align along the direction of the field, with different time selves, from which it follows immediately that any charac-

dependences for the typical length scales parallel and perpelfiStic Iength scale must grow ad. Numerical simulations
dicular to the field. Analytic work on interfacial dynamics ©f the effective dynamics demonstrate scaling, with an aver-
has revealed an instability in surfaces perpendicular to th@9€ domain size growing 5\5 as expected.

field [2,10] that explain this configuration. However, given  S€ction V concludes with a discussion and summary of
the complexity of the problem, no satisfactory scaling result$he results.

have been obtained.

In order to obtain some qualitative understanding, we
study in this paper the Cahn-Hilliard equation in one dimen-
sion. This system has been studied in the absence of a field The phase-separation dynamics of a conserved system are
by several authorgl1-13. In the presence of a field, ana- modeled by the Cahn-Hilliard equati¢f]

Iytic solutions have been obtained for a single interface in an
infinite system[8]. In Sec. Il we show, however, that these @_ )\st_': 1)
solutions are not unique. The direction of the field relative to at o)’

Il. SINGLE-INTERFACE SOLUTIONS
OF THE CAHN-HILLIARD EQUATION

V-
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whereF[ ¢] is the usuakp* Hamiltonian, but with an addi-
tional term to include the effects of the external field

1 1 -

S(V)’+ 2(1-¢%°—Exg|. (2

Flo1- [ %

Throughout this paper only the deterministic Cahn-Hilliard

equation is considered, i.e., the Langevin noise term has been

omitted. This restricts the limits of validity of these results to
temperaturd =0 or, more generally, td small enough that
the effects of thermal fluctuations may be neglected.

If the mobility \ is independent of the order parameter,
inserting(2) into (1) shows immediately that the term involv-

ing E drops out of the dynamics. For nontrivi@nd physi-

cal) results, therefore, the inclusion of an external field re-

quires that the dependence of the mobilityon the order-
parameter field¢ should be explicitly taken into account
[2,5,6]. In this paper we take the simplest form ferthat
maintains the symmetry undep— — ¢, i.e., \=1—aq¢?.
Hence rewriting Eq.(1) in one dimension and defining
aE=E, we obtain

i P PP I
e B T T ®
where
w=d($p*—1)—¢"

is the chemical potential andl is the current. Note that we
have only kept the leading-order term & as is conven-
tional. Technically, this is equivalent to taking the limits
a—0 andE—oe, holding E=aE fixed.

For an infinite system, analytic solutions to Eg) have
been found for a single stationary interfd@&. The order-
parameter profile for a kink solution is given by

()= p.tank ¢.x/2), (4)

with
$2=1+2E, (5)

valid for both signs ofE. The corresponding antikink solu-
tion is obtained by inserting an overall minus sign4n and
replacingE by —E in (5). [This reflects the symmetry ¢8)
under¢p— — ¢, E——E.]

In general, solutions to nonlinear equations are not
unique. The aim of this section is to investigate the solutions
of EqQ. (3) numerically, and to present some simple analysis

that accounts for théat first sight surprisingresults.

The continuum equatiofB8) was discretized on the inter-
val (—L/2,L/2) and antiperiodic boundary conditions
¢(—L/12)=—p(L/2) were imposed. A kink solution was
sought by using an antisymmetric tanh profile, with
¢(0)=0 and¢(L/2)>0, as the initial condition. A range of
initial values of ¢(L/2) was used. This initial state was then
evolved under the dynamid8) until the system reached a
stationary profile. A system size=500 was used with a
mesh size of 0.5. This value df was found to be large
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FIG. 1. Stationary single-interface solutions of E8). There is
a unique solution for eack<0. (@) E=—-0.1, (b) E=-0.3, and
(c) E=—0.5.

It was found that the number and form of the stationary
profiles found were strongly dependent on the sign of the
field. For each negative field value a unique stationary wall
profile was found, independent of the initial conditions used,
i.e.,, of the initial value of$(L/2). The final value of
¢(L/2) obtained was found to be below the analytically pre-
dicted value (¥ 2E)Y2 [Eq. (5)]; the discrepancy van-
ished, however, as the mesh size was decre@ssdFig. L

For a positive field a family of solutions was found, with
the final value of¢(L/2) equal to the initial value. The in-
terface was found in general to be broader tharEfer0, the
asymptotic exponential decay to the vaki€lL/2) occurring
at a rate determined by the magnitude of the field, the decay
rate decreasing as the field decreases. For larger values of the
field, this exponential tail became oscillatqisee Fig. 2
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FIG. 2. Stationary single-interface solutions of E®). (a)

enough that the results showed no finite-size effects. The=0.2, (b) and (c) E=0.3: two examples from a family of solu-

time step used in the iteration was=0.005.

tions. For each value of the field there is a different decay length.
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(@ E>0 and E¢.)?> (42— %)3. Two roots are com-
plex with negative real parts and the third root is real and
positive.

(a) (b) E>0 and E¢..)°<(¢2— 3)3. All roots are real: one
positive and two negative. F&—0, ¢.,—1 and the roots
aren~=*2,—E.

y ®)........, (c) E<0 and E¢..)%< (42— 1)3. All roots are real: one
/ ) ' negative and two positive. FoE—O0, the roots are
A~*2,—E.

(d) E<0 and E¢..)>> (42— 1)3. Two roots are com-
plex with positive real parts and the third root is real and
negative.

For x—o, the function?ﬁ(x) has the form

(C))

3
- . $(X) =2, aiexp\x).
FIG. 3. Graphic solutionschematit of Eq. (8) for the four =1

cases discussed in the text.
The coefficients; are fixed by the initial conditions and the
Some simple analysis of the differential equati@ can value of ¢... Linear stability of the putative solution with
be used to explain some of these features. The existence ofd(x) — ¢., as x—oo requires thatp vanish at infinity, i.e.,
solution representing a single interface in an infinite systenthe coefficients; corresponding to eigenvaluggwith posi-
is dependent on the choice of boundary conditions. For &ive real part must vanish.
physical solution, two of the boundary conditions imposed To see what this implies, consider integrating the third-
must be¢(0)=0, which fixes the position of the interface, order equation (6) with the initial conditions
and ¢"(0)=0, a consequence of the antiperiodicity. The ¢(0)=0= ¢"(0), which follow from the antisymmetry of
other two boundary conditiong’(0) and ¢(«) must be the solution, and some fixed'(0). One also needs to
chosen to ensure the existence of a solution. This placespecify the value of the parametgr, appearing in the equa-
constraints on the possible values of these variables. By thon. The two parameterg’(0) and¢., must be varied until
use of some simple stability analysis it is possible to deduc¢he solutiong(x) approaches the same valge asx—oo. If
the type of constraints this places @ri(0) and¢() and the input values deviate slightly from the correct values, the
hence the number of values for which a solution exists.  solution will ultimately diverge fromp,, due to the presence
Equation(3) can be integrated once to give a third-order of unstable modeéwith Rex;>0) in the linearized solution

differential equation for ¢. To ensure that such diverging terms are absent, the
5 2 D w2 parametersp’ (0) and ¢, have to be adjusted until the cor-
Ed™+(3¢°-1)¢'—¢"=Edz, 6) responding coefficientsa; vanish. This is the familiar
the integration constanEg2=E@%(==) ensuring that tiir:gotmg method” of solving nonlinear differential equa-

#(X) tends to a constant value at infinity. Linearizing around

) . . For E>0 there is only one unstable mode. Hence, for
this value for large positive, ¢(X) = ¢..+ ¢$(X), gives y

solutions to exist only one coefficient must vanish, imposing
~m a2 T ~_ a constraint of the forma,[ ¢'(0),¢..]=0. This defines a
¢+ (1-34)¢ ~2E$.4=0. ™ line in parameter space for which this coefficient vanishes,
resulting in a range of possible values 6y, . One therefore
expects a family of solutions, parametrized k., for
E>0.
For E<O, however, there are two roots with positive real
A3+ (1-3¢2)\=2E ... (8)  parts. Therefore the coefficients of both unstable modes are
required to vanish. Hence the only choice for the parameters
The nature of the roots of this equation is dependent on théb.. and ¢’ (0) for which a solution exists is at the intersec-
values of¢,, andE. tion of the two lines defined by setting both coefficients to
Note that in the present discussion we are takingzero, i.e.a;[¢'(0),¢..]=0=a,[¢'(0),¢.]. This results in
¢(°)>0 and considering both signs & This means that a unique solution foE<O0.
we are dealing with a kink, not an antikink. Later, when we The values ofE and ¢,. determine whether the roots of
consider systems with both kinks and antikinks, we will fix the cubic equatiori8) are real or complex. The existence of
E>0. Since, however, the equation of moti@ is invariant  complex roots with negative real parts f& sufficiently
underE— —E, ¢— — ¢, it follows that the properties of an large and positivdcase(a) in Fig. 3] results in oscillatory
antikink for E>0 are identical to those of a kink f&<0.  behavior.
In the following stability analysis, therefore, we restrict the For a given stable solution, the eigenvalNewith the
discussion to kinks. least-negative real part determines the rate of the asymptotic
There are four cases to consider, as illustrated in Fig. 3.exponential decay towardg... For E small and positive,

It follows thatZzg will have solutions of the form expg),
where the possible values af are the roots of the cubic
equation
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this eigenvalue is—E. Hence, forE>0, the value ofE
determines a characteristic length in the systent, which i

defines the width of any boundary effect at an interface. This

characteristic length is important when considering systems
with more than one interface as in the following sections. For
E<O0, by contrast, there is only one negative eigenvalue,
which approaches a nonzero limiting value #—0: the (@ |®
width of a kink forE<0 therefore remains of order unity for
smallE.

How do we interpret the analytic kink solutigd) in the
light of the foregoing discussion? F&<0, the analytic so-
lution is the unique solution we predict. FBr>0, we have
argued for(and numerically demonstrated family of solu-
tions. Which one corresponds to E4)? It is easy to show

D(x)

that the exponential decay &) to ¢., asx— is governed —

by the more negative of the two negative eigenvalues arising 1 , ‘ ,

from the stability analysis. The exact soluti¢f) therefore 0 100 200 300
corresponds to the case where the amplimderresponding X

to the least negative eigenvalue vanishes, i.e., to just one

member of the family of solutions. FIG. 4. Kink-antikink solutions withL~107 andL~161, for

Throughout this section we have considered only kinkE=0.1, corresponding to the limEL>1.
solutions >0 at positive infinity and allowedE to take
either sign. We conclude by interpreting our results for thefield and was numerically found to be consistent with
physically relevant case where the sigriois fixed (we take ¢~ = (1— J2E)¥2 the value given for an antikink by the
E>0) and both kinks and antikinks are present. From theanalytical solution4). Some examples of the profiles found
symmetry of the dynamics undef— — ¢, E— —E, it fol- are shown in Fig. 4.
lows that forE>0 there is a family of kink solutions, but a These results can be explained using the results of Sec. Il.
unigue antikink solution. In a system with well-separatedIf we assume that the system will reach a steady state and the
(relative toE 1) kinks and antikinks, however, continuity of order parameter may be written as a traveling wave
the function ¢ will select the kink solution that matches ¢= ¢(x—vt), then the Cahn-Hilliard equatiof8) may be
smoothly the unique antikink solution. When the kink- integrated once to obtain
antikink separation is small comparedEo !, more interest- ) ) -
ing behavior is possible. This is the subject of the next sec- E¢"+(3¢°~1)¢'—¢"=Jo—0v ¢, ©
tion.
whereJ, is a constant of integration andis the wave ve-
locity. In the limit EL>1 the order parameter is approxi-
mately constant both inside and outside the bubble
¢~ *+(1—2E)"2 Inserting this into the above equation in

In this section solutions to the Cahn-Hilliard equation for these regions and demanding that it hold inside domains of
a kink-antikink pair in a periodic system are considered. Theboth sign, it is clear that one must haig=E(1— J2E) and
kink-antikink pair is a bubble of plus phase moving in a seav =0. Therefore the solution is stationary, and since in this
of minus phase. The velocities of the interfaces were inveslimit the separatiorL of the interfaces is large compared to
tigated for various field strengths and kink-antikink separa-E 1, the profile is the combination of two single-interface
tions. solutions.

The work in the preceding section produced a character- For one of the interfaces there exists a family of solutions
istic lengthE ™1, which determinegfor a kink) the width of  for a fixed value of the field, whereas the other interface has
any boundary effect present at an interface. In the systems unique solution with a plateau height given by
considered in this section there is a second important char= (1—2E)*2 This specifies the boundary conditions for
acteristic length_, the distance between the two interfaces.the first interface, hence picking out one from the family of
The behavior of these systems is dependent on the relatialutions.
values of these two characteristic lengths. In this section we
will consider two limits: first the case wheEeL>1 and then
the opposite limtEL<1. The results from the second re-
gime motivate a simple model for the many-interface prob- In this limit the system was found numerically to evolve
lem, which is dealt with in Sec. IV. to a steady state with a fixed profile moving at a finite ve-
locity. This may be shown by a comparison of the order
parameter with the current, since for a traveling-wave solu-
tion Eq. (3) gives—v ¢'=—J'. Therefore the order param-

The numerical solutions found for a kink-antikink pair in eter will be a multiple of the curreni plus an overall con-
this limit are stationary. The value of the order parameteistant. This expectation is confirmed by the data presented in
between interfaces was dependent only on the value of theig. 5.

[ll. SINGLE-BUBBLE SOLUTIONS OF
THE CAHN-HILLIARD EQUATION

B. EL<1

A EL>1
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FIG. 6. Plot(schematiy of ¢2— ¢2(x) for a kink-antikink pair
FIG. 5. Comparison between the order-parameter profile and thia the limit EL>1. The total area under the curve is zero.
current for a kink-antikink pair of sizé~21, for E=0.01, corre-

sponding to the limi€L<1 as is clear from Fig. 4, the kink solution overshogis and

As in the previous limit, a long-range boundary effect apprc_)achezs thg plateau ¢ft° from the Wrong_ side. The i
exists at the kink interface, with the order parameter decayfUnction ¢:.— ¢ for the kink therefore contains both posi-
ing exponentially to a fixed value outside the bubble. How-tivé and negative regions, as shown in Fig. 6. The negative
ever, sinceEL<1 the full exponential tail on the other side 'egions evidently contain the larger afemte that, although
of the interface(i.e., between the two interfadeis missing  the magnitude ofsZ — $? in these regions i©(E), the de-
and the order parameter varies roughly linearly between theay constant is als®(E), leading to an area ob(1)] in
two interfaces, through a height difference proportional tosuch a way that the integral for the kink interface is precisely
the field. This linear regime between the interfaces is evident-2.,/2¢.. .
in Fig. 5. . 3 . Consider now the cageL<1. In this case, the interior of

Using the assumptiofverified numerically that the solu-  the pubble is too small to contain the full exponential tail
tion may be written as a traveling wave, Ef) becomes  from the kink. The contributions from the kink to

2 2 . .
E(p2— ¢2)+ (32— 1)’ — " + +$.,)=0, (10 J(ps— %) will therefore be less negative than when
(7= 92)+(34 )" =9 " +v(d+ ¢a) (9 EL>1, resulting in a net positive value for the integral and,

where— ¢., is the value of the order parameter in the minusVia (11), a positive bubble velocityy<E/L. Therefore, in
phase far from the interfaces. The integration conslgnih  this limit the interfaces evolve to a fixed profile that moves

(9) was fixed in(10) by the requirementp(+ =)= —¢.,. with a velocityv <E/L. The qualitative tendency of smaller
Integrating this equation over the whole system yields arbubbles to move faster than larger ones was noted by Yeung
expression for the velocity et al, on the basis of numerical studig3|.

We can make this argument quantitative in the limit of
fdx(p2— ¢?) ) 5 small E, for which ¢, — 1. In this limit, the area under the
-E Jdx( ..+ P) - 2¢>wa dx(¢z—¢%, (1D kink peak in Fig. 6 approaches the same valu@ s the
area under the antikink. The negative region between the two
where the final result follows from noting thet= ¢.. inside  peaks is completely suppressed, as the decay lengthis1/
the bubble and- ¢.. outside. much larger than the separatibrof the peaks. The negative
The functiong? — ¢ is peaked at the interfaces. This can contribution from the semi-infinite region to the left of the
be used to explain why a finite velocity is expected. Considekink peak, however, retains the valte2/2. The total area
first the caseEL>1, for which we showed above that the under the kink is therefore zero and the area under the kink-
velocity is zero. For this case, therefof@lx( % — $?) must  antikink pair is 2/2. Equation(11) then gives a velocity
be zero. Since the kink and antikink are well separated ang = /2E/L for E—0. Applying this result to the data of Fig.
the order parameter saturates at the vahuen the interme- 5 for which E=0.01 andL=20.88(measured between the
diate plateau regionfdx(¢%—?) is a sum of kink and  zeros of ¢), gives v=6.77<10"%, which compares well
antikink contributions. One of the interfaces, correspondinguith the measured velocity of 6.8210 4.
to the antikink, is known analyticallifrom Eq.(4)] and the The results of this section will be used in Sec. IV to
contribution it makes to the integral isy2¢... The contri-  derive the set of reduced equations employed to simulate a
bution from the kink interface therefore must give an overallmultidomain system. As a first step in generalizing this ap-
negative contribution of-2+/2¢... This is possible because, proach to many domains, we express the single-bubble cal-

v
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culation in the limitEL<<1 in terms of currents. From Eq.
(3), the current] can be written, up to an overall constant, as

3=~ —E¢P=¢"+(1-342)¢' ~E¢?.

The velocity of an interface is related to the discontinuity in
the current at the interfadel] v=AJ/A ¢, whereAJ and

A ¢ are the discontinuities in the current and the order pa-
rameter, respectively. For a bubble that moves without
change of shapé¢a traveling wave J must have different
valuesJ;, andJ, inside and outside the bubble. To lowest
order inE, we can writep?’= ¢2 =1 both inside and outside,
so that(12) becomesl= ¢” —2¢' —E in both regions. Out-
side the bubble, far from the interfaces, is constant, so
Jouii= —E. Inside, the order parameter changes by an amount
of order E over a distanceL, so we estimatep’=—E/L
(and ¢" is negligible, giving J;;,~ —E+O(E/L) correct to
O(E). Finally, both interfaces have the same velocity
v~E/L, in agreement with our earlier res\ltl) based on
the traveling-wave solution. This second approach is, how-

12
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FIG. 7. Time dependence of the square of the average domain

ever, readily generalizable to the multidomain situation inlength for the dynamics described by Ed4). The mean domain

the smallE limit.

IV. MANY-INTERFACE MODEL

size grows a

$1/2

amounts of the plus and minus phases. The fielas ab-

sorbed into the time scale, i.e., we &t 1 in (14). The time
In this section a set of reduced equations is derived usingtep used in the iteration wagot. This was chosen because
the work of the preceding section to describe the dynamicge expect'’? (i.e., power-lay growth. Then the\t«=t leads
of a large number of interfaces in a periodic system. Thiso ALxL, i.e., domains typically change length by a fixed
reduced dynamics is numerically simulated, and the averag@mall fraction of the mean length in each update. Similarly,

domain length, domain-size distribution function, and struc-domains were annihilated if the distance between interfaces
ture factor are calculated. became smaller than a specifienal) fraction of the aver-

We consider the case in whidlL;<1 for all domains age domain size. In the calculation of the average domain
i, where thel; are the domain lengths. From the argumentssize and the domain-size distribution function, results were
of the preceding section, we expect that, in this limit, averaged over ten runs. It was found that the average domain

¢'~—E/L; in domaini and that the currenl; in domain
i is given, up to an additive constant, By<E/L;. The pro-

size(L(t)) grew asy/t, as expectedFig. 7). The simulation
results show that the distribution functid¥(L,t) (the frac-

portionality constant in this relation is the same for all do-tjon of domains which have size at timet) scales well
mains (an extension of the argument given above for thefrom quite early times(Fig. 8. The scaling function was

kink-antikink pair[15] gives its value as 42).
Let us define interface to have domain length; to its

right and L;_; to its left. If the interface is a kink E
(A¢>0) its velocityv; is = ﬁﬁg

A (11 s 5

L= —0C —_——

ViTAg THIL L) (13 Ky
8

For an antikink A ¢<0) the velocityv;"1k is given by the
same expression, but with a facterl. If we arbitrarily as- 0.5 ¥

sign eveni to domains of positivep, the equation for the
time evolution of the domain lengthL; /dt=(v;, 1—v;) be-

comes 8
dL; (1 ‘E( 1 1 ) 14 §i
a - CVET TG
.} &
| ) L T Y
where an overall constant has been absorbed into the time % 1 2 : 3
scale. It follows immediately that, if is a typical domain L/<L(t)>

length,dL/dt~E/L, i.e.,L(t)~(Et)¥2
The dynamics of the system was studied numerically us-

FIG. 8. Scaled domain-size distribution function for the dynam-

ing this set of reduced equations. The system was initiallyics described by Eq14). The data correspond to times (), 20
prepared with 100 000 domains with approximately equal+), 40 (*), 80 (O), 160 (x), 320 (A), and 640 ).
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k behavior, following the methods used to establish khe

é smallk behavior[1,14] for the nondriven Cahn-Hilliard
o equation in dimensiond>1.
= 1r ;;; For k—0, Eq.(3) can be written in Fourier space as
o et
A ks déx
3 4 <t = EK($7)x, (15)
a' . where the term of ordek? is negligible and has been omit-
¥ g, ted. Integrating with respect tg multiplying by ¢_,, and
PR averaging gives the structure factor
; td
; 1 S(k,t) = = S(k,0)+2( ¢y (t) ¢_«(0))
; %
H % t t
] . +E2k2fdtfdt 2t 2[t,]) -
/ M JAu A(¢TtaD(dTta]) k)
% 5 10 15 20 (16)

k<L(t)>
Since S(k,t) has the scaling forns(k,t)=Lg(kL), where

FIG. 9. Scaled structure factor for the dynamics described by- iS shorthand foxL), it follows that S(k,0) is negligible
Eq. (14). The data correspond to times between 10 and 640, as ifompared taS(k,t) at late times(largeL) and can be ne-
Fig. 8. glected. Similarly{ ¢(t) ¢_,(0)) has the scaling fornil]

_ o _ _ L*(KL), where N<d/2=1/2 follows from the Cauchy-
found to be linear at the origin, with a Gaussian tail. HOW-Schwarz inequa”tylﬁ], so this term can also be dropped for
ever, we were unable to calculate it analytically. largeL.

Figure 9 shows the structure factor. This was taken as an Next we consider the equal-time correlation function
average of 500 runs. The scaling collapse is good except negy(r t) = ([ ¢2 — p2(x) ][ b2 — $2(x+r)]). It's Fourier trans-
the peak, where the data are noisy. A In-In plBtg. 10 form is the equal-time version of the quantity required in
shows that in the limik(L)>1 the structure factor POSSESSes (16) The functionp(x)= 2 — $%(x) vanishes except near
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the expected Porod tafi(k,t) k™ “. The constant of propor- - 4omain walls, so it is essentially a domain-wall density func-
tionality is dete_rr271|ned by the average domain-wall densityyjo, \yith s-function contributions from the wall§15]. It
[1] §(k't):4pk . Hence we would expect a “Porod plot”  ¢410ys that(p)~1/L, the mean domain-wall density, while
of k(L)S(k.t) to tend to the value 4 at lardgL ). The data, ;1) has the scaling ford(r,t) =L ~2f(r/L). The two-
although noisy in this regime, are consistent with this eXPecCma generalization isD(r,t;,t,)= Ll_sz(r/Ll L,/Ly)
tation. SELEELV2 Lalba),

- . whereL,=L(t,). The spatial Fourier transform required in

The smallk (Zjata in Fig. 10 sugges_t the guadratic depen—(l6) haé the( flgrmT(k t? t,)= LIlgD(kLl L,/L,) (\q/vhich
denceS(k,t) «k=. We can show that this is the correct small- reduces td.l’lh(LZ/Ll) in the limit k—0 (we do not expect

T to vanish in this limit, becausg is not a conserved quan-

50 tty).
ﬁ -1 F If L(t) grows as a power df, the double time integral in
S (16) gives, up to constants?/L, so the right-hand side of
% 20 (16) is of order E?k?t?/L. Requiring thatS(k,t)=Lg(kL)
PR have the same smatl-form gives S(k,t)~k?L3 and hence
= L~(Et)Y2 It is reassuring that this form fok(t) agrees
iy precisely with that obtained from the reduced dynangies.
5 F V. CONCLUSION
-6 | We have studied, analytically and numerically, the effect
g of an external driving field on the coarsening dynamics of
T the one-dimensional Cahn-Hilliard equationTat0. For a
E single stationary interface, it was shown that the direction of
i the field for a domain wall of a given sign determines

whether there is a unique solution or a family of solutions. In
In [k<L(t)>] the latter case, the approach of the interface profile function
to its asymptotic value is governed by an exponential tail
FIG. 10. Double-logarithmic plot of the scaled structure factor. With & decay constant that vanishes linearly with the driving
Times between 10 and 640 are shown, as in Fig. 8. The straigifteld E. There is therefore a new characteristic length scale
lines in the smalk(L) and largek(L) regimes have gradients 2 E ' in this system.
and —2, respectively. The latter is the expected Porod regime; an The behavior of a kink-antikink pait‘bubble”) falls into
argument for the former is given in the text. two classes, characterized by the relative values of the inter-
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face separatio. and the new characteristic leng *. In validity of our approach strictly requires In@y<L <1/E.
the limit EL>1, the bubble profile is stationary. In the op- For smallE, of course, this regime is very broad.
posite limitEL<1, a bubble of plus phase moves through In a related work, the one-dimensional Ising model with
the minus phase with a velocity=<E/L. Kawasaki spin-flip dynamics, biased in one direction, has
For the many-domain coarsening dynamics an equation dfeen studied17]. Numerical results were obtained for a
motion for the domain lengths was deriviiEl. (14)], valid  range of volume fractions, including the case of equal vol-
in the regimeEL <1, in which the length of a given domain ume fractions simulated here, ar@l growth demonstrated.
changes at a rate determined by the lengths of the domaingere, as here, rather general arguments leagh tgrowth
on either side. The mean domain size grows/Es. Despite  for all volume fractions: for the present model from the di-
the apparent simplicity of this model, we have so far beermensional analysis of Eq14). For the Ising model, how-
unable to make further analytical progress. Numerical simuever, exact results for the domain-size distributiand for
lations, however, demonstrate dynamic scaliffgr the  the “persistence exponent17]) were obtained in the limit
domain-size distribution and the structure fagtand con-  where one phase occupies a negligible volume fraction, so it
firm the predictedyt growth law. An argument for the ob- is interesting to consider the present model in this same limit.
servedk? behavior of the structure factor at smilhas been When one phaséthe plus phase, sayccupies a very
presented. small volume fraction, the system consists of domains of
It would be interesting to compare the dynamics of thisplus phase separated lypically) much larger domains of
effective model to that of the original driven Cahn-Hilliard minus phase. To a first approximation, therefore, each plus
equation. There are practical obstacles, however, to a simgiomain can be treated as an isolated bubble in the sense of
lation of the full dynamics. To ensure that the condition Sec. Ill. Each such bubble then moves at a sg&kd where
EL<1 is satisfied at all times, a small valuelis required, L is its length(we are takingEL<1 here, all bubbles mov-
leading to very slow growth, whereas in the reduced modeing in the same direction. As a result, small bubbles catch up
the value ofE factors out. Furthermore, updating the field with larger bubbles, with which they then merge, and the
everywhere in space is computationally very inefficient, escombined domain slows down. Just before the bubbles
pecially at late times, compared to just updating the domaimerge, the approximation of treating them as independent
lengths. Systems large enough to support theidifial do-  breaks down when the size of the intervening minus domain
mains used in the reduced dynamiemd needed for good becomes comparable with the size of the bubbles. This pre-
statisticg would require prohibitively large computer time. sumably leads to negligible corrections to the scaling func-
We have shown that the mean domain dizgrows as tions, however, in the small volume-fraction limit. This new
JEt when the conditiorL<1/E is satisfied. FoiE strictly ~ model is so simple that analytic progress may be possible.
zero, however, logarithmic growth @fwith time is obtained However, we will leave this question for future work.
[11], so the question of the crossoverks-0 arises. In our
treatment, the typical interface velocity is of ordEfL,
whereas forE=0 it is of order u/L, where the chemical
potential u is of order exp{-const) [13]. The crossover C.L.E. would like to thank Sarah Phillipson for useful
between these two forms occurs whenr-In(1/E), so the discussions and EPSR@nited Kingdom for support.
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